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1Department of Neuroscience
2Department of Psychiatry
University of Pittsburgh, Pittsburgh, PA 15260, USA
3Allen Institute for Brain Science, Seattle, WA 98103, USA
4School of Life Science, Northeastern Normal University, Jilin, China
5Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
6Behavioral Neuroscience Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
7Molecular Neurobiology and Cluster of Excellence ‘‘Nanoscale Microscopy andMolecular Physiology of the Brain,’’ European Neuroscience

Institute, 37077 Göttingen, Germany

*Correspondence: huangy3@upmc.edu (Y.H.H.), yandong@pitt.edu (Y.D.)
http://dx.doi.org/10.1016/j.neuron.2014.08.023
SUMMARY

Glutamatergic projections from the medial prefrontal
cortex (mPFC) to nucleus accumbens (NAc) con-
tribute to cocaine relapse. Here we show that silent
synapse-based remodeling of the two major mPFC-
to-NAc projections differentially regulated the pro-
gressive increase in cue-induced cocaine seeking
after withdrawal (incubation of cocaine craving).
Specifically, cocaine self-administration in rats ge-
nerated AMPA receptor-silent glutamatergic synap-
ses within both infralimbic (IL) and prelimbic mPFC
(PrL) to NAc projections, measured after 1 day of
withdrawal. After 45 days of withdrawal, IL-to-NAc
silent synapses became unsilenced/matured by re-
cruiting calcium-permeable (CP) AMPARs, whereas
PrL-to-NAc silent synapses matured by recruiting
non-CP-AMPARs, resulting in differential remodeling
of these projections. Optogenetic reversal of silent
synapse-based remodeling of IL-to-NAc and PrL-
to-NAc projections potentiated and inhibited,
respectively, incubation of cocaine craving on with-
drawal day 45. Thus, pro- and antirelapse circuitry
remodeling is induced in parallel after cocaine
self-administration. These results may provide sub-
strates for utilizing endogenous antirelapse mecha-
nisms to reduce cocaine relapse.

INTRODUCTION

Drug-induced alterations in glutamatergic synaptic transmission

to the nucleus accumbens (NAc) have been critically implicated

in drug relapse and conditioned drug effects (Kalivas, 2004;

Pickens et al., 2011; Wolf and Ferrario, 2010). One recently
Neu
discovered alteration is cocaine-induced generation of silent glu-

tamatergic synapses (Brown et al., 2011; Huang et al., 2009;

Koya et al., 2012; Lee et al., 2013). Silent synapses are thought

to be immature glutamatergic synapses containing stable

NMDA receptors (NMDARs), while AMPA receptors (AMPARs)

are either absent or highly labile (Groc et al., 2006; Hanse

et al., 2013; Kerchner and Nicoll, 2008). De novo generation of

silent synapses may create new synaptic contacts, and subse-

quent unsilencing/maturation of these silent synapses by recruit-

ing new AMPARs remodels the affected neurocircuits, not only

strengthening circuitry transmission but also creating new forms

of information flow to redefine future behaviors (Dong and

Nestler, 2014; Hanse et al., 2013; Lee and Dong, 2011).

We recently demonstrated that silent synapse-based remod-

eling of basolateral amygdala (BLA) to nucleus accumbens shell

(NAcSh) projections critically contributes to the development of

‘‘incubation of cocaine craving’’ (Lee et al., 2013), the progres-

sive increase in cue-induced cocaine seeking after withdrawal

from the drug (Grimm et al., 2001; Neisewander et al., 2000).

At present, it is unknown whether other glutamatergic inputs to

the NAc also undergo silent synapse-based remodeling and

whether such potential circuitry remodeling plays a role in

cocaine craving and relapse.

The medial prefrontal cortex (mPFC) provides a major gluta-

matergic input to the NAc, with the infralimbic mPFC (IL) prefer-

entially projecting to NAcSh and the prelimbic mPFC (PrL) to the

NAc core (NAcCo) (Krettek and Price, 1977; Sesack et al., 1989).

There is evidence that drug priming-, cue-, and stress-induced

reinstatement after extinction of cocaine-reinforced responding

are critically dependent on activation of the PrL-to-NAcCo gluta-

matergic projections (Kalivas, 2009; Kalivas and McFarland,

2003). On the other hand, inactivation of IL-to-NAcSh glutama-

tergic projections reinstates cocaine seeking after extinction of

the drug-reinforced responding, suggesting opposite modula-

tion by PrL-to-NAcCo and IL-to-NAcSh projections of cocaine

seeking after extinction (LaLumiere et al., 2012; Peters et al.,

2008).
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Figure 1. Anatomical and Electrophysiological Differentiation of the IL-to-NAcSh and PrL-to-NAcCo Projections in Rats

(A) A coronal section stained for Nissl showing the cytoarchitectonic boundaries of the IL and PrL in the rat, including the relatively indistinct lamina in the IL (but

not the PrL) and the sudden change from a compacted to a scattered layer II at the PrL-IL border. Scale bar, 1 mm.

(B) Representative images showing immunoperoxidase labeling for FG at the injection sites involving mainly the NAcCo or NAcSh and the corresponding

distribution of retrogradely labeled cells in the PrL and IL. Inset shows FG-labeled neurons at 403 magnification. Scale bar, 500 mm; 50 mm for insert.

(C) Diagrams of coronal slices showing the injection sites (yellow dots) of FG in the NAcCo of five rats (left) and ventral-medial NAcSh of four rats (right).

(legend continued on next page)
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Here, we report that, similar to BLA-to-NAcSh projection (Lee

et al., 2013), cocaine self-administration generated silent synap-

ses within both the IL-to-NAcSh and PrL-to-NAcCo projections,

and subsequent unsilencing/maturation of these silent synapses

after withdrawal from the drug differentially remodeled the two

projections via a process that involved synaptic insertion of cal-

cium-permeable (CP) AMPARs in the IL-to-NAcSh projection

and synaptic insertion of non-CP-AMPARs in the PrL-to-NAcCo

projection. Most importantly, optogenetic reversal of silent syn-

apse-based remodeling of the IL-to-NAc projection enhanced

the expression of incubation of cocaine craving on withdrawal

day 45, whereas reversal of the remodeling within the PrL-to-

NAc projection inhibited this incubation. These results suggest

that although similar silent synapse-based remodeling occurs

in different glutamatergic inputs to the NAc, the behavioral

consequences are projection specific. Furthermore, our results

suggest that antirelapse neuroadaptations are endogenously

induced in parallel with prorelapse processes.

RESULTS

Dissection of the IL-to-NAcSh and PrL-to-NAcCo
Projections
Early studies suggest that the IL and PrL are anatomically differ-

entiable in rats (Krettek and Price, 1977; Reep, 1984), with the IL

preferentially projecting to the NAcSh and the PrL preferentially

innervating the NAcCo (Brog et al., 1993; Sesack et al., 1989).

The differentiating anatomical features established in these

studies, such as the relatively clear layer separation in the PrL,

but not in the IL (Krettek and Price, 1977), were observed in

our studies (Figure 1A) and used as the criteria to separate these

two mPFC subregions. To verify the differential projections from

the IL and PrL to the NAc, we stereotaxically injected the retro-

grade tracer Fluoro-Gold (FG; 2%) into either the NAcSh or

NAcCo of anesthetized rats and killed them 5–7 days later. In

coronal slices from rats injected with FG into the NAcSh, we

observed substantially more neurons labeled in IL than PrL,
(D) Summarized results showing that intra-NAcSh injections of FG resulted in a

5.9%; t3 = 5.65, p = 0.01), and that intra-NAcCo injection of FG resulted in a highe

t4 = 3.60, p = 0.02).

(E) Diagrams of coronal slices showing the injection sites (yellow dots) where ChR

light (DIC, middle) and fluorescent (YFP, right) images showing the expression s

(F) Same experimental setup as shown in (E) for intra-IL injection of ChR2.

(G and H) Confocal images showing ChR2-expressing IL (G) or PrL (H) neurons fro

potentials elicited by optogenetic stimulation.

(I and J) Diagrams and confocal images showing ChR2-expressing neural fibers i

ChR2.

(K) Example traces (left) and summarized results (right) showing that optogenetic

or intra-PrL expression of ChR2 elicited synaptic currents at �70 mV in a NAcS

current in NBQX: IL-to-NAcSh, 7.1% ± 1.8%; t4 = 50.6, p < 0.01; PrL-to-NAcCo,

(L) Example traces showing that currents from IL-to-NAcSh (left) or PrL-to-NAcC

(M) Examples traces showing that currents from the IL-to-NAcSh (left) or PrL-to-N

prevented by TTX (1 mM).

(N) Example traces (left), trials (middle) of these traces, and summarized results (rig

at both IL-to-NAcSh (t5 = 10.5, p < 0.01, paired t test) and PrL-to-NAcCo (t6 = 7.

(O) Example traces (left), trials of these traces (middle), and summarized results (r

reduced the success rate of IL-to-NAcSh (t4 = 4.3, p = 0.01, paired t test) and Pr

(P) Example EPSCs (upper) and summarized results (lower) showing that optoge

NAcCo neurons, whereas stimulation of the IL projection elicited substantially lar

0.01, NAcCo versus NAcSh for either PrL or IL, Bonferroni posttest).*p < 0.05; **

Neu
whereas in rats with intra-NAcCo FG injection, more FG-positive

neurons were observed in PrL than IL (Figures 1B–1D), verifying

the differential projections of the IL and PrL to the two NAc sub-

regions (Brog et al., 1993).

To establish an optogenetic approach for functional examina-

tion of these two mPFC projections, we stereotaxically injected

adeno-associated virus 2 (AAV2) expressing YFP-tagged chan-

nelrhodopsin 2 (ChR2) into the IL or PrL of anaesthetized rats.

Three to four weeks later, we observed in coronal slices that

expression of ChR2 was confined within the IL or PrL as intended

(Figures 1E and 1F). After screening several optogenetic para-

meters, we found that laser stimulations with pulse duration of

%1 ms generated reliable TTX-sensitive action potentials in

ChR2-expressing IL or PrL neurons (Figures 1G, 1H, and S1A–

S1D, available online). In the same rats with IL or PrL expression

of ChR2, extensive fluorescent fibers that expressed ChR2 were

observed in the NAcSh or NAcCo (Figures 1I and 1J), presumably

originating fromChR2-expressing IL or PrL neurons, respectively.

To selectively examine synaptic transmission within the two

mPFC projections to the NAc, we recorded synaptic responses

induced by optogenetic stimulation (with laser pulse duration

of 1 ms) from NAcSh or NAcCo medium spiny neurons (MSNs)

in slices from rats injected with ChR2 into the IL or PrL. These

responses, recorded at �70 mV (VReversal[Cl
�] = ��48 mV) in

bath containing no GABA receptor antagonists, were inhibited

by perfusion of the AMPAR-selective antagonist NBQX (5 mM),

indicating that they are glutamatergic (Figure 1K). These opto-

genetically elicited synaptic responses exhibited a short delay

after presynaptic stimulation (IL-to-NAcSh, 0.60 ± 0.16 ms, n =

19; PrL-to-NAcCo, 0.70 ± 0.13ms, n = 20; Figure 1L), suggesting

monosynaptic transmission. Thus, the 1ms optogenetic stimula-

tion allowed us to examinemonosynaptic EPSCs at IL-to-NAcSh

and PrL-to-NAcCo synapses.

To determine whether the optogenetic stimulation-induced

synaptic transmission described above was action potential

dependent, as occurs endogenously, we examined electrophys-

iological and biophysical properties of these optogenetically
higher percentage of labeled neurons in IL (83.1% ± 5.9%) than PrL (16.9% ±

r percentage of neurons labeled in PrL (61.7% ± 3.2%) than IL (38.3% ± 3.2%;

2-expressing AAV2 was injected in the PrL of five anesthetized rats (left), and

ite of ChR2 3 weeks after intra-PrL injection of ChR2-AAV2.

m rats with intra-IL or intra-PrL expression of ChR2, respectively. Inset, action

n the NAcSh (I) and NAcCo (J) from rats with intra-IL or intra-PrL expression of

stimulation (1 ms) of ChR2-expressing fibers in NAc slice from a rat with intra-IL

h MSN that were inhibited by the AMPAR-selective antagonist NBQX (relative

5.6% ± 0.9%; t4 = 102.1, p < 0.01).

o (right) synapses exhibited short delays after presynaptic stimulation.

AcCo (right) synapses by optogenetic stimuli (1 ms stimulation duration) were

ht) showing that the success rate of synaptic responses was decreased by TTX

6, p < 0.01, paired t test) synapses.

ight) showing that reducing the bath concentration of Ca2+ (from 2.5 to 1.0 mM)

L-to-NAcCo (t4 = 8.5, p < 0.01, paired t test) synapses.

netic stimulation of the PrL projection elicited substantially larger responses in

ger responses in NAcSh neurons (F1,65 = 60.0, p < 0.01, two-way ANOVA; p <

p < 0.01.

ron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc. 1455



Neuron

Cocaine Triggers Antirelapse Circuit Remodeling
induced responses in more detail. Both IL-to-NAcSh and PrL-to-

NAcCo transmissions were prevented by perfusion of TTX

(1 mM), indicating that the 1 ms optogenetic stimulation-elicited

mPFC-to-NAc synaptic responses are action potential depen-

dent (relative amplitude after TTX: IL-to-NAcSh, 8.4% ± 3.6%,

n = 5, t4 = 25.5, p < 0.01; PrL-to-NAcCo, 8.2% ± 3.0%, n = 5,

t4 = 30.2, p < 0.01; paired t test; Figure 1M). Notably, optogenetic

stimulation with longer pulse durations may generate TTX-insen-

sitive synaptic responses (Figures S1D–S1F). Importantly, the

TTX-sensitive synaptic transmission was also evident when

EPSCs were induced by minimal optogenetic stimulations, in

which the laser duration was further decreased to 0.01–0.1 ms.

Specifically, when the stimulation intensity/duration was re-

duced to the point at which successes and failures of synaptic

transmission were induced alternatively, the success rate re-

flects (but is not necessarily equal to) the presynaptic release

probability (Pr). The success rate at both IL-to-NAcSh and PrL-

to-NAcCo synapses was reduced close to 0 by TTX (1 mM) (Fig-

ure 1N), and also substantially decreased when the extracellular

concentration of Ca2+ was reduced (from 2.5 to 1.0 mM) (Fig-

ure 1O). Thus, minimal stimulation-induced EPSCs at IL-to-

NAcSh and PrL-to-NAcCo synapses were likely triggered by

action potential-dependent activation of voltage-gated calcium

channels and the resulting calcium influx, similar to endogenous

processes.

To examine whether the biophysical properties of optogeneti-

cally elicited EPSCs are consistent with electrically induced

EPSCs, we performed the multiple-probability fluctuation anal-

ysis (MPFA) (Scheuss and Neher, 2001; Silver, 2003) in our opto-

genetic setup. We optically induced five consecutive EPSCs

from IL-to-NAcSh or PrL-to-NAcCo synapses, and based on

the relationship between the variance and themean EPSC ampli-

tudes (Figures S1I–S1M) (Suska et al., 2013), the estimated

presynaptic release probability (Pr) was 0.55 ± 0.07 (n = 5) at

IL-to-NAcSh synapses and 0.38 ± 0.10 (n = 5) at PrL-to-NAcCo

synapses, consistent with the Pr (�0.4) of corticoaccumbens

synapses estimated using electrical stimulation (Casassus

et al., 2005) or other short-duration optogenetic stimulations

(Suska et al., 2013). The Pr was much higher when EPSCs

were elicited by optogenetic stimulation with long durations (Fig-

ure S1M). Finally, we examined the preferential projections of the

IL and PrL to NAcSh and NAcCo using the optogenetic

approach. In brain slices from rats with IL expression of ChR2,

the same optogenetic stimulations inducedmuch larger synaptic

responses in NAcSh than in NAcCo, whereas in brain slices from

rats with PrL expression of ChR2, the same optogenetic stimula-

tions elicited much larger synaptic responses in NAcCo than

NAcSh (Figure 1P). These results, together with the above

anatomical results, suggest that in the rat, our optogenetic and

physiological approaches can selectively target the IL and PrL

projections to the NAcSh and NAcCo, respectively.

Cocaine Self-Administration Generates Silent Synapses
in IL-to-NAcSh Projection
With the optogenetic stimulation procedures verified above, we

performed the minimal stimulation assay (Huang et al., 2009;

Isaac et al., 1995; Lee et al., 2013; Liao et al., 1995) to assess

silent synapses within the IL-to-NAcSh projection during early
1456 Neuron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc
withdrawal (1 day) from cocaine self-administration. We injected

rats with ChR2-expressing AAV2 into the IL and trained them to

nose-poke for intravenous cocaine for 6 days (one overnight ses-

sion followed by 2 hr/day for 5 days at 0.75 mg/kg/infusion; infu-

sions were paired with a light cue). As previously demonstrated

(Lee et al., 2013), this training procedure induced progressive

increases in cue-induced cocaine seeking after withdrawal

(incubation of cocaine craving) with significantly higher nose-

poke responding in extinction tests performed after 45 with-

drawal days than after 1 day (Figures 2A and 2B). During the

extinction tests, nose-poke responding led to light cue presenta-

tion, but not cocaine. On withdrawal day 1 (without extinction

tests), we used the optogenetic minimal stimulation assay to

assess the level (%) of silent synapses onNAcShMSNs in saline-

and cocaine-exposed rats. Specifically, minimal stimulations

either induced or failed to induce small EPSCs at +50 or

�70 mV. If AMPAR-silent synapses are present in a set of re-

corded synapses, the failure rate at �70 mV should be higher

than that at +50 mV; based on these differential failure rates,

the percentage of silent synapses among all synapses can be

estimated (Liao et al., 1995). Our results show that the level of si-

lent synapses within the IL-to-NAcSh projection was increased

on withdrawal day 1 (Figures 2C–2E and S2A).

Maturation of Silent Synapses within the IL-to-NAcSh
Projection after Prolonged Withdrawal
After 42–47withdrawal days (referred to as 45 days hereafter), the

level of silent synapses within the IL-to-NAcSh projection re-

turned to the basal (saline) levels (Figures 2F–2H and S2B). We

previously demonstrated that cocaine-generated silent synapses

within the amygdala-to-NAc projection disappear by an unsilenc-

ingprocess involving recruitment of calcium-permeable AMPARs

(CP-AMPARs) (Lee et al., 2013), key substrates in incubation of

cocaine craving (Conrad et al., 2008; Wolf and Tseng, 2012).

We tested whether cocaine-generated silent synapses within

the IL-to-NAcSh projection followed the same cellular course.

After 45 withdrawal days, evoked EPSCs from IL-to-NAcSh syn-

apses showed increased inward-rectification (Figures 2I–K and

S2C) and increased sensitivity to the CP-AMPAR-selective

antagonist Naspm (200 mM; Figures 2L–2N and S2D), suggesting

synaptic insertion of CP-AMPARs. Note that the I–V curves of

AMPAR EPSCs in each recorded neuron were calibrated with

their reversal potentials tominimize the influence of liquid junction

potentials and insufficient voltage control.

To examine whether these CP-AMPARs were indeed inserted

into cocaine-generated silent synapses during the unsilencing/

maturation process, we inhibited CP-AMPARs with Naspm

(200 mM) in slices from rats 45 days after saline (control condition)

or cocaine self-administration (Figure S2E). In the minimal stim-

ulation assay, pharmacological inhibition of CP-AMPARs did not

affect the failure rate of EPSCs at either �70 or +50 mV evoked

from IL-to-NAcSh synapses in saline-exposed rats (Figures 3A–

3C and 3G). In contrast, 45 days after cocaine self-administra-

tion, inhibition of CP-AMPARs significantly increased the failure

rate of EPSCs at �70 mV, but not at +50 mV, suggesting that

some IL-to-NAcSh synapses contained predominantly CP-

AMPARs at this withdrawal time point (Figure 3D–3F and 3G).

Assessment of percentage of silent synapses using these failure
.
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A Figure 2. Generation and Maturation of

Silent Synapses within the IL-to-NAcSh Pro-

jection after Cocaine Self-Administration

(A and B) Summarized results show that after

saline (A) or cocaine (B) self-administration (2 hr

session) for 5 days after �12 hr overnight training

cue-induced cocaine seeking (nose-pokes in the

extinction test, 1 hr session) was significantly

higher after 45 days of withdrawal from cocaine

than after 1 day; nose-pokes remained low in all

conditions in saline-exposed rats.

(C and D) EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulation (left) over 100 tri-

als (right) from an example recording of IL-to-

NAcSh transmission 1 day after saline (C) or

cocaine (D) self-administration.

(E) Summarized results showing that the level of

silent synapses within the IL-to-NAcSh projection

was significantly increased 1 day after cocaine

self-administration (saline, 12.7% ± 3.5%, n/m =

12/5; cocaine, 32.5%± 3.1%, n/m = 10/4; t23 = 4.2,

p < 0.01, cell-based analysis, and t7 = 4.9, p < 0.01,

animal-based analysis).

(F and G) EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulation (left) over 100 tri-

als (right) from an example recording of IL-to-

NAcSh transmission 45 days after saline (F) or

cocaine (G) self-administration.

(H) Summarized results showing that the level of

silent synapses within the IL-to-NAcSh projection

in cocaine-exposed rats returned to the basal level

(saline) after 45 withdrawal days (saline, 9.1% ±

2.9%, n/m = 16/9; cocaine, 6.3% ± 2.4%, n/m =

27/13; t41 = 0.75, p = 0.46, cell-based; t20 = 1.3, p =

0.20, animal-based, t test).

(I) Example EPSCs evoked from IL-to-NAcSh

synapses at�70 to +70mV (10–20mV increments)

from a saline- and a cocaine-exposed rat after 45

withdrawal days.

(J) The EPSC I-V curves from IL-to-NAcSh syn-

apses in saline (left)-or cocaine (right)-exposed

rats on withdrawal day 45.

(K) Summarized results showing that the

rectification index of EPSCs from IL-to-NAcSh

synapses was decreased (more rectifying) in

cocaine-exposed rats on withdrawal day 45 (sa-

line, 0.97 ± 0.09, n/m = 12/6; cocaine, 0.83 ± 0.01,

n/m = 33/10; t43 = 2.30, p = 0.03, cell-based; t14 =

2.6, p = 0.02, animal-based, t test).

(L and M) Example EPSCs (left) and their time

courses (right) from IL-to-NAcSh synapses in a

saline-exposed (L) or cocaine-exposed (M) rat (on

withdrawal day 45) before and during perfusion of

Naspm.

(N) Summarized results showing that EPSCs from

IL-to-NAcSh synapses were not affected by

Naspm in saline-exposed rats, but were significantly inhibited by Naspm in cocaine-exposed rats (cell-based: saline/cocaine3 acsf/Naspm, F1,21 = 5.0, p = 0.04,

two-way ANOVA; p < 0.01, saline-Naspm versus cocaine-Naspm, Bonferroni posttest; animal-based: F1,11 = 6.2, p = 0.03). *p < 0.05; **p < 0.01.

Neuron

Cocaine Triggers Antirelapse Circuit Remodeling
rates showed that inhibition of CP-AMPARs partially recovered

silent synapses in cocaine-exposed rats toward the level

observed on withdrawal day 1, suggesting that some cocaine-

generated silent synapses within this projection became unsi-

lenced by recruiting CP-AMPARs after withdrawal from cocaine

(Figure 3H).
Neu
LTD Reverses Maturation of Silent Synapses in the
IL-to-NAcSh Projection
Synaptic insertion of CP-AMPARs in NAc is a prominent cellular

adaptation involved in incubation of cocaine craving (Conrad

et al., 2008). Compared to pre-existing AMPARs, newly inserted

CP-AMPARs after withdrawal from cocaine may be loosely
ron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc. 1457
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Figure 3. Inhibition of CP-AMPARs Causes

Re-Emergence of Silent Synapses within

the IL-to-NAcSh Projection after 45 days of

Withdrawal from Cocaine

All experiments were performed using rats with

intra-IL expression of ChR2 45 days after saline or

cocaine self-administration.

(A) Example EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulation of IL-to-NAcSh

synapses in a saline-exposed rat before and dur-

ing perfusion of Naspm.

(B and C) Consecutive trials of the example EPSCs

in (A) at �70 (B) or +50 mV (C).

(D) Example EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulation of IL-to-NAcSh

synapses in a cocaine-exposed rat before and

during perfusion of Naspm.

(E and F) Consecutive trials of the example EPSCs

in (D) at �70 (E) or +50 mV (F).

(G) Summarized results showing that in saline-

exposed rats the failure rate of IL-to-NAcSh

synaptic transmission was not changed at either

�70 or +50 mV by perfusion of Naspm

(�70 mV/+50 mV 3 control-acsf/Naspm: F1,16 =

0.01, p = 0.9, cell based; F1,10 = 0.3, p = 0.60,

animal based; two-way ANOVA). In cocaine-

exposed rats, the failure rate was significantly

increased by perfusion of Naspm at �70 mV, but

not at +50 mV (cell based: �70 mV/+50 mV 3

control-acsf/Naspm, F1,28 = 5.3, p = 0.03; two-

way ANOVA; p < 0.01, control-acsf versus Naspm

at �70 mV, Bonferroni posttest; animal based:

F1,12 = 7.9, p = 0.02).

(H) Summarized results showing that inhibiting

CP-AMPARs by Naspm caused re-emergence of

silent synapses within the IL-to-NAcSh projection

45 days after cocaine self-administration (cell

based: saline-control, 9.4% ± 3.6%, saline-

Naspm, 6.9% ± 4.5%, n/m = 9/6; cocaine-con-

trol, 6.4% ± 3.3%, cocaine-Naspm, 18.3% ±

4.3%, n/m = 15/7; saline/cocaine 3 control/

Naspm, F1,22 = 4.3, p = 0.04, two-way ANOVA;

p = 0.02, cocaine control versus cocaine-Naspm,

Bonferroni posttest; animal-based: F1,11 = 9.5,

p = 0.01). *p < 0.05.
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tethered to the postsynaptic density and thus highly susceptible

to regulation (Ferrario et al., 2011; McCutcheon et al., 2011).

Some forms of long-term depression (LTD) of excitatory synaptic

transmission, which are often achieved by internalization of syn-

aptic AMPARs (Malenka and Bear, 2004), can be used to selec-

tively internalize newly inserted CP-AMPARs.

We optimized an optogenetic LTD induction protocol (1 Hz 3

10 min with pulse duration of 1 ms), which only induced LTD at

IL-to-NAcSh synapses in slices from cocaine-exposed rats after

45 withdrawal days, but did not affect those synapses in saline-

exposed rats (Figures 4A, 4B, and S2F). We selected a moder-

ate LTD protocol so that the basal IL-to-NAcSh transmission

would remain intact (i.e., no effect in saline controls) while

cocaine-induced alterations were selectively manipulated. This

LTD was prevented by pharmacological inhibition of metabo-

tropic glutamate receptor 1 (mGluR1) by LY367385 (50 mM) or
1458 Neuron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc
NMDARs by D-APV (50 mM) (Figures 4C and S2G), consistent

with mGluR1’s role as a negative regulator of CP-AMPARs

and incubation (Loweth et al., 2014; Wolf and Tseng, 2012)

and the established role of NMDARs in NAc LTD (Kasanetz

et al., 2010). In saline-exposed rats, EPSCs at IL-to-NAcSh syn-

apses were insensitive to Naspm (Figures 2L and 2N), and LTD

induction did not change this sensitivity (Figures 4D, 4F, and

S2F). In cocaine-exposed rats, EPSCs at IL-to-NAcSh synap-

ses, which were sensitive to Naspm (Figures 2M and 2N),

were no longer Naspm sensitive after LTD (Figures 4E, 4F,

and S2F), indicating that our LTD protocol preferentially internal-

ized/inhibited CP-AMPARs. Because CP-AMPARs are prefer-

entially recruited to silent synapses after withdrawal from

cocaine (Figures 2 and 3), this LTD protocol can be used to re-

silence the newly matured/unsilenced synapses within the IL-to-

NAcSh projection.
.
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Figure 4. LTD Reverses Maturation of Silent Synapses within the IL-to-NAcSh Projection after 45 Days of Withdrawal from Cocaine

All experiments were performed using rats with intra-IL expression of ChR2 45 days after saline or cocaine self-administration.

(A) Example EPSCs from IL-to-NAcSh synapses before and after LTD induction in saline- or cocaine-exposed rats.

(B) Summarized results showing that the LTD induction did not affect IL-to-NAcSh transmission significantly in saline-exposed rats but induced LTD in cocaine-

exposed rats (cell based: saline/cocaine 3 LTD time course: F45,855 = 2.6, p < 0.01, two-way ANOVA; p = 1.00, saline-preLTD [at data point indicated by ‘‘1’’]

versus saline-postLTD [at data point indicated by ‘‘2’’]; p < 0.01, cocaine-preLTD [at ‘‘1’’] versus cocaine-postLTD [at ‘‘2’’], Bonferroni posttest; animal based:

F45,495 = 2.0, p < 0.01).

(C) Summarized results showing that LTD induction within the IL-to-NAcSh projection in cocaine-exposed rats was prevented in the presence of either APV or LY

(APV/LY 3 LTD time course: F45,1035 = 1.0, p = 0.38, cell based; F45,315 = 1.2, p = 0.17, animal based). Insets show an example EPSCs before and after LTD

induction.

(D) Time course of EPSCs of an example recording of IL-to-NAcSh synapses in a saline-exposed rat before and after LTD induction, and during perfusion of

Naspm after LTD. Inset shows averaged EPSCs taken around the time points as specified. Calibration bars, 30 pA, 10 ms.

(E) Time course of EPSCs of an example recording of IL-to-NAcSh synapses in a cocaine-exposed rat before and after LTD induction, and during perfusion of

Naspm after LTD. Inset shows averaged EPSCs taken around the time points as specified. Calibration bars, 20 pA, 10 ms.

(F) Summarized results showing that in saline-exposed rats IL-to-NAcSh transmission was not affected by LTD induction and subsequent perfusion of Naspm

(F2,16 = 2.2, p = 0.15, cell based; F2,12 = 2.9, p = 0.09, animal based, one-way ANOVA); in cocaine-exposed rats this transmission, which would be inhibited by

Naspm, was no longer sensitive to Naspm after LTD induction (cell based: F2,20 = 26.5, p < 0.01, one-way ANOVA; p < 0.01, preLTD versus postLTD; p < 0.01,

preLTD versus postLTD-Naspm; p = 1.00, postLTD versus postLTD-Naspm, Bonferroni posttest; animal based: F2,10 = 18.2, p < 0.01). **p < 0.01; ns, not sig-

nificant.
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Cocaine Self-Administration Generates Silent Synapses
in the PrL-to-NAcCo Projection
Using similar experimental approaches, we selectively ex-

pressed ChR2 within the PrL (Figures 1E and 1H) and assessed

silent synapses in the PrL-to-NAcCo projection 1 day after saline

or cocaine self-administration (Figure S2H). As in IL-to-NAcSh

projection, the level of silent synapses within the PrL-to-NAcCo

was increased in cocaine-exposed, but not saline-exposed, rats

(Figures 5A–5C).

Maturation of Silent Synapses within the PrL-to-NAcCo
Projection after Prolonged Withdrawal from Cocaine
Within the PrL-to-NAcCo projection, the level of silent synapses

also returned to the control level 45 days after withdrawal from

cocaine (Figures 5D–5F and S2I). However, unlike the IL-to-

NAcSh projection, EPSCs at PrL-to-NAcCo synapses did not

show increased rectification (Figures 5G–5I and S2J) or

increased Naspm (200 mM) sensitivity (Figures 5J–5L and S2K).

Furthermore, on withdrawal day 45, perfusion of Naspm had

no effect on the failure rates of minimal stimulation-evoked

EPSCs within the PrL-to-NAcCo projection at either �70
Neu
or +50 mV in saline- or cocaine-exposed rats (Figures 6A–6G

and S2L) and did not restore cocaine-generated silent synapses

(Figures 6H and S2L). Thus, the mechanisms that mediate the

‘‘disappearance’’ of silent synapses within the PrL-to-NAcCo

projection are different from those in the IL-to-NAcSh projection.

This disappearance could result from synaptic pruning, but the

observation that the number of dendritic spines in the NAcCo

is increased after prolonged withdrawal from cocaine (Robinson

et al., 2001) suggests synaptogenesis rather than synaptic prun-

ing as the critical mechanism. Alternatively, cocaine-generated

silent synapses within the PrL-to-NAcCo projection could be

unsilenced by recruiting non-CP-AMPARs. If so, induction of

LTD should still internalize/inhibit those newly inserted non-CP-

AMPARs to reverse their maturation.

LTD Reverses Maturation of Silent Synapses in PrL-to-
NAcCo Projection
To explore whether cocaine-generated silent synapses within

the PrL-to-NAcCo projection mature by recruiting non-CP-

AMPARs and whether this potential maturation can be reversed,

we applied the optogenetic LTD protocol (1 Hz 3 10 min) to
ron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc. 1459
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Figure 5. Generation and Maturation of Si-

lent Synapses within the PrL-to-NAcCo Pro-

jection after Cocaine Self-Administration

(A and B) EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulation (left) over 100

trials (right) from example recordings of PrL-to-

NAcCo transmission in rats 1 day after saline (A) or

cocaine (B) self-administration.

(C) Summarized results showing that percentage

of silent synapses within the PrL-to-NAcCo pro-

jection was increased 1 day after cocaine self-

administration (saline, 10.3% ± 2.8%, n/m = 16/4;

cocaine, 26.2% ± 6.4%, n = 14/4; t28 = 2.4, p =

0.02, cell based; t6 = 2.5, p = 0.04, animal based, t

test).

(D and E) EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulations (left) over 100

trials (right) from example recordings of PrL-to-

NAcCo transmission in saline-exposed (D) or

cocaine-exposed (E) rats 45 days after self-

administration.

(F) Summarized results showing that percentage

of silent synapses within the PrL-to-NAcCo pro-

jection in cocaine-exposed rats returned to the

basal level (saline) after 45 withdrawal days (saline,

11.0% ± 4.9%, n/m = 10/5; cocaine, 10.2% ±

4.6%, n/m = 12/5; t20 = 0.13, p = 0.9, cell based;

t8 = 0.06, p = 0.95, animal based, t test).

(G) Example EPSCs evoked from PrL-to-NAcCo

synapses at�70 to +70mV (10–20mV increments)

from saline- and cocaine-exposed rats after 45

withdrawal days.

(H) The I–V curves of EPSCs evoked from PrL-to-

NAcCo synapses in saline- or cocaine-exposed

rats after 45 withdrawal days.

(I) Summarized results showing that rectification of

AMPAR EPSCs from PrL-to-NAcCo synapses was

not significantly altered in cocaine-exposed rats

after 45 withdrawal days (saline, 0.96 ± 0.08, n/m =

11/5; cocaine, 0.96 ± 0.04, n/m = 9/6; t18 = 0.04,

p = 0.97, cell based; t9 = 0.8, p = 0.5, animal based,

t test).

(J and K) Example EPSCs (left) and their time

courses (right) from PrL-to-NAcCo synapses in a

saline-exposed (J) or cocaine-exposed (K) rat

before and during perfusion of Naspm.

(L) Summarized results showing that EPSCs from PrL-to-NAcCo synapses were not affected by Naspm in saline- or cocaine-exposed rats (saline/cocaine 3

control/Naspm: F1,20 < 0.01, p = 0.98, cell based; F1,8 = 0.07, p = 0.79, animal based, two-way ANOVA). *p < 0.05.
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PrL-to-NAcCo synapses in slices from rats 45 days after saline or

cocaine self-administration (Figure S2M). Induction of LTD did

not affect EPSCs in saline-exposed rats but induced depression

of these synapses in cocaine-exposed rats (Figures 7A and 7B).

Different from the induction mechanisms in the IL-to-NAcSh

projection, LTD within the PrL-to-NAcCo projection in cocaine-

exposed rats was prevented by application of the NMDAR

antagonist D-APV, but not the mGluR1 antagonist LY367385

(Figures 7C and S2O). These results are consistent with the es-

tablished role of mGluR1-dependent LTD, which preferentially

targets synaptic CP-AMPARs in the NAc (Loweth et al., 2014).

Thus, the LTD was likely achieved by NMDAR-dependent inhibi-

tion/internalization of non-CP-AMPARs.

As predicted, the expression of this LTD did not affect the

sensitivity of EPSCs at PrL-to-NAcCo synapses to Naspm in
1460 Neuron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc
saline- or cocaine-exposed rats (Figures 7D–7F and S2M).

Importantly, induction of LTD induced re-emergence of silent

synapses within the PrL-to-NAcCo synapses after 45 days of

withdrawal from cocaine (Figures 7G–7L and S2N). These re-

sults suggest that cocaine-generated silent synapses within

the PrL-to-NAcCo projection mature into fully functional synap-

ses by recruiting non-CP-AMPARs, and LTD induction partially

reverses this maturation. This appears to be a parsimonious

interpretation, but other possibilities exist. For example, LTD in-

duction may also silence some synapses that were not previ-

ously generated by cocaine exposure. In this case, behavioral

consequences of LTD at PrL-to-NAcCo projection (see below)

cannot be exclusively attributed to the reversal of silent synapse

maturation. In either case, by generation and potential matura-

tion of silent synapses, the IL-to-NAcSh and PrL-to-NAcCo
.
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Figure 6. Inhibition of CP-AMPARs Does

Not Cause Re-Emergence of Silent Synap-

ses within the PrL-to-NAcCo Projection af-

ter 45 Days of Withdrawal from Cocaine

All experiments were performed using rats with

PrL expression of ChR2 45 days after saline or

cocaine self-administration.

(A) Example EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulation of PrL-to-NAcCo

synapses in a saline-exposed rat before and dur-

ing perfusion of Naspm.

(B and C) Consecutive trials of the example EPSCs

in (A) at �70 (B) or +50 mV (C).

(D) Example EPSCs evoked at �70 or +50 mV by

optogenetic minimal stimulation of PrL-to-NAcCo

synapses in a cocaine-exposed rat before and

during perfusion of Naspm.

(E and F) Consecutive trials of the example EPSCs

in (D) at �70 (E) or +50 mV (F).

(G) Summarized results showing that perfusion of

Naspm did not affect the failure rates of PrL-to-

NAcCo synaptic transmission at either �70

or +50 mV in saline-exposed (�70 mV/+50 mV 3

control-acsf/Naspm: F1,12 = 1.4, p = 0.25, cell

based; F1,8 = 2.0, p = 0.20, animal based, two-way

ANOVA) or cocaine-exposed (�70 mV/+50 mV 3

acsf/Naspm: F1,16 < 0.01, p = 0.94, cell based;

F1,8 = 0.06, p = 0.81, animal based, two-way

ANOVA) rats.

(H) Summarized results showing that inhibiting

CP-AMPARs by Naspm did not cause re-emer-

gence of silent synapses within the PrL-to-NAcCo

projection 45 days after cocaine self-administra-

tion (percentage silent synapses: saline-control,

13.3 ± 6.6, saline-Naspm, 16.5 ± 7.8, n/m = 7/5;

cocaine-control, 10.7 ± 5.8, cocaine-Naspm,

10.4 ± 4.6, n/m = 9/5; saline/cocaine 3 control/

Naspm: F1,14 = 0.08, p = 0.80, cell based; F1,8 =

0.3, p = 0.61, animal based).
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projections are simultaneously remodeled after withdrawal from

cocaine.

Opposing Behavioral Effects of Silent Synapse-Based
Remodeling of IL- and PrL-to-NAc Projections
The cocaine self-administration procedure that induced silent

synapse-based circuitry remodeling led to incubation of cocaine

craving (Figure 2B) (Lee et al., 2013), a process that may

contribute to drug relapse in humans (Bedi et al., 2011). We

next applied the established LTD protocol in vivo to examine

the roles of silent synapse-based remodeling of these two

mPFC-to-NAc projections in incubation of cocaine craving.

To manipulate the IL-to-NAcSh projection in vivo, we first veri-

fied the in vivo efficacy of the LTD protocol. Rats received IL in-

jections of ChR2-expressingAAV2 andwere implanted bilaterally

with optical fibers in NAcSh. After cocaine self-administration

and 45 withdrawal days, in vivo LTDwas induced by optogenetic
Neu
stimulation via preimplanted optical fibers (Figure 8A). We ob-

tained brain slices from postinduction rats and observed that

CP-AMPARs were no longer detectable at IL-to-NAcSh synap-

ses (Figures 8B, 8C, and S3A), suggesting reversal of maturation

of silent synapses, as demonstrated in vitro (Figure 4).

We then delivered this LTD protocol to cocaine-exposed rats

on withdrawal day 45 and �1 min later assessed cue-induced

cocaine seeking in the extinction test (1 hr). We found that

reversing the maturation of cocaine-generated silent synapses

within the IL-to-NAcSh projection enhanced cue-induced

cocaine seeking (Figures 8D, S3C, and S3E). These results sug-

gest that silent synapse-based remodeling of the IL-to-NAcSh

projection normally inhibits cue-induced cocaine seeking, and

that interfering with this inhibition results in increased cocaine

seeking.

To manipulate the PrL-to-NAcCo projection, we again first

verified the in vivo efficacy of the LTD protocol. Specifically,
ron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc. 1461
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Figure 7. LTD Reverses Maturation of Silent Synapses within the PrL-to-NAcCo Projection after 45 Days of Withdrawal from Cocaine

All experiments were performed using rats with intra-PrL expression of ChR2 45 days after saline or cocaine self-administration.

(A) Example EPSCs from PrL-to-NAcCo synapses before and after LTD induction in saline- or cocaine-exposed rats.

(B) Summarized results showing that the LTD induction did not affect PrL-to-NAcCo transmission in saline-exposed rats, but induced LTD in cocaine-exposed

rats (saline/cocaine 3 pre/postLTD: F45,765 = 6.2, p < 0.01, two-way ANOVA; p = 0.99, saline-preLTD [at ‘‘1’’] versus saline-postLTD [at ‘‘2’’]; p < 0.01, cocaine-

preLTD [at ‘‘1’’] versus cocaine-postLTD [at ‘‘2’’], Bonferroni posttest, cell based; F45,360 = 6.1, p < 0.01, animal based).

(C) Summarized results showing that LTD expression within the PrL-to-NAcCo projection in cocaine-exposed rats was prevented in the presence of APV but not

LY (APV/LY3 LTD time course: F45,765 = 4.4, p < 0.01, two-way ANOVA; p = 1.00, control versus APV at ‘‘2’’; p = 0.01, control-LY versus LTD-LY at ‘‘2,’’ Bonferroni

posttest, cell based; F45,360 = 4.0, p < 0.01, animal based). Insets show example EPSCs before and after LTD induction.

(D) Time course of EPSCs of an example recording of PrL-to-NAcCo synapses in a saline-exposed rat before and after LTD induction, and during perfusion of

Naspm after LTD. Inset shows averaged EPSCs taken around the time points as specified. Calibration bars, 25 pA, 10 ms.

(E) Time course of EPSCs of an example recording of PrL-to-NAcCo synapses in a cocaine-exposed rat before and after LTD induction, and during perfusion of

Naspm after LTD. Inset shows averaged EPSCs taken around the time points as specified. Calibration bars, 20 pA, 10 ms.

(F) Summarized results showing that EPSCs from PrL-to-NAcCo synapses were not affected by LTD protocol in saline-exposed rats (F2,16 = 1.7, p = 0.22, cell-

based; F2,8 = 2.61, p = 0.13, animal-based; one-way ANOVA,) but were decreased in cocaine-exposed rats (F2,16 = 35.1, p < 0.01, one-way ANOVA; p < 0.01,

preLTD versus either postLTD or postLTD-Naspm; p = 0.84, postLTD versus postLTD-Naspm, Bonferroni posttests, cell based; F2,8 = 31.87, p < 0.01, animal

based), and perfusion of Naspm after LTD did not induce additional changes in EPSCs in either saline- or cocaine-exposed rats.

(G) Summarized results showing the LTD induction of two sets of NAcCo MSNs (from saline- or cocaine-exposed rats) that were subsequently assessed for

percentage of silent synapse analysis in (H)–(L). Inset shows EPSCs from PrL-to-NAcCo synapses before and after LTD induction in saline- or cocaine-exposed

rats (saline/cocaine3 LTD time course: F19,475 = 9.3, p < 0.01, cell based; F(19,152) = 5.9, p < 0.01, animal based; two-way ANOVA). Calibration bars, 30 pA, 10ms.

(H and I) EPSCs evoked at�70 or +50 mV by optogenetic minimal stimulations (H) over 100 trials (I) in an example recording of PrL-to-NAcCo synapses after LTD

induction of these synapses in a saline-exposed rat.

(J and K) EPSCs evoked at�70 or +50mV by optogenetic minimal stimulations (J) over 100 trials (K) in an example recording of PrL-to-NAcCo synapses after LTD

induction of these synapses in a cocaine-exposed rat.

(L) Summarized results showing that LTD induction induced reemergence of silent synapses in the PrL-to-NAcCo projection of rats 45 days after cocaine self-

administration (percentage of silent synapses: saline, 9.8 ± 4.2, n/m = 14/5; cocaine, 32.4 ± 6.2, n/m = 14/5, t26 = 3.04, p < 0.01, t test, cell based; t8 = 2.5, p = 0.04,

animal based). **p < 0.01; ns, not significant.
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after 45 withdrawal days, the LTD induction protocol was

applied by optogenetic stimulation to the NAcCo in rats with

PrL expression of ChR2. We then obtained the brain slices
1462 Neuron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc
and observed that the percentage of silent synapses within

the PrL-to-NAcCo projection was partially restored in cocaine-

exposed rats receiving LTD induction (Figures 8E–8I and S3B),
.
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Figure 8. Reversing the Maturation of Silent Synapses in the IL-to-NAcSh and PrL-to-NAcCo Projections Causes Opposing Effects on Incu-
bation of Cocaine Craving

(A) Diagrams showing the timeline of behavioral experiments and the LTD induction in both PFC-to-NAc projections before the test for cue-induced cocaine

seeking on withdrawal day 45.

(B) Example EPSCs from IL-to-NAcSh synapses before and during perfusion of Naspm in a NAc slice from a rat receiving intra-NAcSh LTD induction 45 days after

saline (upper) or cocaine self-administration (lower).

(C) Summarized results showing that in cocaine-exposed rats EPSCs at IL-to-NAcSh synapses were no longer inhibited by Naspm after in vivo LTD induction

(saline/cocaine 3 withdrawal day: F1,25 = 0.16, p = 0.69, cell based; F1,6 = 0.00, p = 0.95, animal based; two-way ANOVA).

(D) LTD induction in the IL-to-NAcSh projection increased incubated cue-induced cocaine seeking in the extinction test. Data are presented as the numbers of

nose-pokes to active holes on withdrawal days 1 and 45 (left) (withdrawal day3 sham/LTD: F1,22 = 13.4, p < 0.01, two-way ANOVA; p < 0.01, sham-withdrawal

day 1 versus sham-withdrawal day 45; p = 0.01, sham-withdrawal day 45 versus LTD-withdrawal day 45, Bonferroni posttest) and the nose-pokes on withdrawal

day 45 relative to withdrawal day 1 (right) (withdrawal day 3 sham/LTD: F1,22 = 13.1, p < 0.01, two-way ANOVA; p < 0.01, sham-withdrawal day 1 versus sham-

withdrawal day 45; p < 0.01, sham-withdrawal day 45 versus LTD-withdrawal day 45, Bonferroni posttest).

(E–H) Example EPSCs and their time courses in the minimal stimulation assay of PrL-to-NAcCo projection in a NAc slice from a rat receiving intra-NAcCo LTD

induction 45 days after saline (E and F) or cocaine (G and H) self-administration.

(I) Summarized results showing that after in vivo LTD induction in the PrL-to-NAcCo projection, percentage of silent synapses was increased 45 days after

cocaine self-administration (saline, 11.2%± 4.3%, n/m = 17/5; cocaine, 23.2%± 4.9%, n/m = 20/5, t35 = 2.0, p = 0.048, cell based; t8 = 3.3, p = 0.01, anima based;

t test).

(J) LTD induction in the PrL-to-NAcCo projection decreased incubated cue-induced cocaine seeking in the extinction test. Data are presented as the numbers of

nose-pokes to active holes on withdrawal days 1 and 45 (left) (withdrawal day3 sham/LTD: F1,16 = 17.8, p < 0.01, two-way ANOVA; p < 0.01, sham-withdrawal

day 1 versus sham-withdrawal day 45; p < 0.01, LTD-withdrawal day 1 versus LTD-withdrawal day 45; p < 0.01, sham-withdrawal day 45 versus LTD-withdrawal

day 45, Bonferroni posttest) and changes (relative) of nose-pokes between the two withdrawal days (right) (withdrawal day 3 sham/LTD: F1,16 = 16.9, p < 0.01,

two-way ANOVA; p = 0.03, sham-withdrawal day 1 versus sham-withdrawal day 45; p = 0.02, LTD-withdrawal day 1 versus LTD-withdrawal day 45; p < 0.01,

sham-withdrawal day 45 versus LTD-withdrawal day 45, Bonferroni posttest). *p < 0.05; **p < 0.01.
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suggesting a reversal of maturation of silent synapses. In

another group of rats with the same cocaine self-administration

experience and stereotaxic surgeries, we applied the LTD in-

duction protocol to PrL-to-NAcCo projections on withdrawal

day 45, followed by an extinction test. Reversing maturation

of cocaine-generated silent synapses within the PrL-to-NAcCo

projection decreased cue-induced cocaine seeking to a level

even lower than that observed on withdrawal day 1 (Figures

8J, S3D, and S3E). The additional reduction likely reflects a gen-

eral role of this projection in cue-induced cocaine seeking (See,

2005), independent of the withdrawal period. For example,
Neu
some pre-existing synapses within this projection may become

AMPAR silent upon LTD induction, resulting in additional weak-

ening of this projection, thus lowering cocaine seeking. Further-

more, it is unlikely that the inhibitory effect of LTD stimulation on

nose-poke responding in the extinction test is due to motor

impairments. We found that in vivo LTD induction had no effect

on high rate operant responding in rats trained to nose-poke for

sucrose reward (Figure S3F). Overall, in contrast to the IL-to-

NAcSh projection, silent synapse-based remodeling of PrL-to-

NAcCo projection functions to promote incubation of cocaine

craving.
ron 83, 1453–1467, September 17, 2014 ª2014 Elsevier Inc. 1463
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DISCUSSION

Our results show that the two primary mPFC projections under-

went silent synapse-based remodeling after withdrawal from

cocaine self-administration, and that disruption of the remodel-

ing of these projections resulted in opposite effects on incubation

of cocaine craving (Figure S4). Importantly, the two projections

underwent different forms of silent synapse-based remodeling

that involved CP-AMPARs in IL-to-NAcSh and non-CP-AMPARs

in PrL-to-NAcCo.

Silent Synapse-Based Circuitry Remodeling after
Withdrawal from Cocaine Self-Administration
Synaptic connections are the core components determining the

anatomical and functional properties of neural circuits and

consequently learned behaviors and motivational states. Under

normal conditions, the NAc circuits are assumed to remain rela-

tively stable in order to maintain stable and reversible emotional

and motivational states (Mogenson and Yang, 1991).

One way to redefine the circuitry architecture is through gen-

eration of new synaptic contacts. In the NAc, exposure to

cocaine generates silent synapses that possess key features of

nascent glutamatergic synapses (Brown et al., 2011; Huang

et al., 2009); in parallel, there may be an increase in the number

of dendritic spines (Robinson et al., 2001) and activation of

prosynaptogenesis transcriptional and neurotrophic cascades

(Chao and Nestler, 2004; Koya et al., 2012). These results led

to the idea that cocaine-generated silent synapses are nascent

synaptic contacts, and that generation and maturation of silent

synapses remodel the NAc glutamatergic circuits and redefine

the related information flow that controls cocaine-taking behav-

iors (Dong and Nestler, 2014; Huang et al., 2013). Guided by this

idea, our goal here was to interfere with these cocaine induced,

potentially new synaptic contacts in the mPFC-to-NAc projec-

tions, without interfering with basal pre-existing synaptic trans-

mission in these projections. To achieve this goal, we chose a

modest LTD induction protocol (1 Hz 3 10min with pulse dura-

tion of %1 ms). This LTD protocol removed CP-AMPARs in

cocaine-exposed rats but did not affect IL-to-NAc synaptic

transmission in saline-exposed rats (Figures 4A, 4B, 7A, and

7B), suggesting selective disruption/interference of cocaine-

induced silent synapses.

A potential concern with this interpretation is raised by

previous work demonstrating broad upregulation of NAc CP-

AMPARs after withdrawal from a longer-access cocaine self-

administration regimen (Wolf and Tseng, 2012). If our cocaine

self-administration regimen leads to CP-AMPAR incorporation

into pre-existing synapses in addition to silent synapses, and

our LTD protocol induces AMPAR internalization at both types

of synapses, the LTD protocol would not only result in reversal

of maturation of silent synapses but would also induce a more

generalized depression of PFC-to-NAc synapses. However,

arguing against this possibility, our further analysis suggests

that LTD-induced internalization of AMPARs from pre-existing

IL-to-NAcSh synapses was minimal. As demonstrated in Fig-

ure 3, the basal level of silent synapses was �7% within the

IL-to-NAcSh projection after 45withdrawal days, andwas recov-

ered to �18% upon CP-AMPAR inhibition (Figure 3H). Thus,
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�11% of IL-to-NAcSh synapses were CP-AMPAR-containing,

matured silent synapses at this withdrawal time point. At the sin-

gle-channel level, GluA2-lacking CP-AMPARs exhibit �4-fold

(8.7 versus 2.2 pS) higher conductance at negative membrane

potentials (i.e., �70 mV) than regular AMPARs (Ozawa et al.,

1991). Factoring in this consideration, contribution of these

11% matured silent synapses to total EPSCs should be �33%

(estimated as [11% 3 4]/[11% 3 4 + 89% 3 1] = 0.33). After

LTD induction, the amplitude of total EPSCs was decreased by

�30% (Figure 4B). Combined with the observation that the

Naspm sensitivity was not observed after LTD induction, it is

likely that the CP-AMPAR-containing, matured silent synapses

were the primary targets of our LTD manipulation.

IL-to-NAcSh, BLA-to-NAcSh, and PrL-to-NAcCo
Projections in Incubation of Cocaine Craving
Using region-specific pharmacological manipulations, recent

studies show that the IL and NAcSh contribute to extinction-

induced suppression of cocaine seeking (LaLumiere et al.,

2012; Peters et al., 2008). A primary projection from the IL is to

the NAcSh (Sesack et al., 1989), and our results show that one

function of silent synapse-based remodeling of this projection

is to inhibit incubation of cue-induced cocaine craving. These

findings not only depict a circuitry-based antirelapsemechanism

but also potentially clarify some complexities uncovered in prior

studies of the circuitry of cocaine relapse.

First, although the NAcSh is essential for cocaine priming and

cue-induced reinstatement after extinction (Bossert et al., 2013;

Schmidt et al., 2005), inactivation of NAcSh can also reinstate

cocaine seeking after extinction (Peters et al., 2008), suggesting

dichotomous roles of NAcSh. Our previous and current results

show that silent synapse-based remodeling of the BLA (Lee

et al., 2013) and IL projections to the NAcSh (Figures 2 and 3)

caused opposing effects on incubation of cocaine craving, indi-

cating that the dichotomous roles of the NAcSh are likely to be

achieved by different NAcSh afferents. It has been shown that

excitatory projections from different brain regions arrive at

different dendritic locations of NAc MSNs and possess different

synaptic properties, often in a cell type (i.e., dopamine D1 versus

D2 receptor-expressing MSNs)-specific manner (Britt et al.,

2012; MacAskill et al., 2012). With such differential anatomical

architectures, the remodeled IL and BLA projections may differ-

entially reshape local circuits within NAcSh as well as NAcSh

projections of the ‘‘direct’’ and ‘‘indirect pathways,’’ resulting in

differential or opposing behavioral consequences. Interestingly,

a recent study shows that withdrawal from a different cocaine

self-administration regimen in mice selectively induces synaptic

insertion of CP-AMPARs in the mPFC projection to D1-express-

ing NAcSh neurons (Pascoli et al., 2014), highlighting the po-

tential for circuit-specific as well as cocaine regimen-specific

effects.

Second, it has been shown that pharmacologically inhibiting

the IL decreases incubation of cocaine craving (Koya et al.,

2009). Furthermore, selective inactivation of cFos-expressing

IL neurons inhibits context-induced reinstatement of heroin

seeking (Bossert et al., 2011), as does anatomical ‘‘disconnec-

tion’’ of the IL-to-NAcSh projection (Bossert et al., 2012). These

seemingly discrepant results may indicate a complex nature of
.
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the IL-to-NAcSh projection in the control of drug seeking. One

scenario is that the basal, pre-existing function of IL-to-NAcSh

projection is required for establishing cue- or context-induced

relapse to drug seeking, but this projection acquires new antire-

lapse functions after withdrawal from cocaine. Manipulations in

these previous studies may differentially affect the pre-existing

and acquired functions of this projection. In our study, we selec-

tively targeted the cocaine-induced silent synapses without

affecting basal drug-naive glutamatergic transmission. This

more-selective in vivo optogenetic LTD protocol, which inter-

fered with these new synapses in this projection rather than

disrupting pre-existing synapses, promoted the expression of in-

cubation of cocaine craving (Figure 8D).

Third, in contrast to the IL-to-NAcSh projection, reversing

maturation of PrL-to-NAcCo silent synapses on withdrawal day

45 decreased incubation of cocaine craving (Figure 8J). This

result is in agreement with previous findings indicating that prior

cocaine self-administration increases PrL-to-NAcCo glutama-

tergic transmission induced by cocaine priming, and that inhibi-

tion of the PrL-to-NAcCo projection inhibits reinstatement of

cocaine seeking (McFarland et al., 2003; Stefanik et al., 2013).

In addition to the PrL-to-NAcCo projection, maturation of silent

synapses in the BLA-to-NAcSh is also essential for incubation

of cocaine craving (Lee et al., 2013), suggesting a close connec-

tion between the BLA and PrL in modulating NAc-based

cocaine-taking behaviors. Indeed, it has been observed that

the BLA and mPFC projections gate each other’s influences on

NAc-based cellular and behavioral responses (Jackson and

Moghaddam, 2001; McGinty and Grace, 2008), likely also

involving the NAcCo and shell interactions. We speculate that

themetastructure of the BLA and PrL projections to theNAc shell

and core, as well as the shell-core interaction, are redefined

following silent synapse-based remodeling of individual circuits,

and the integrated effect mediates the incubation of cocaine

craving.

NAc CP-AMPARs in Incubation of Cocaine Craving
Upregulation of NAc CP-AMPARs after withdrawal from

extended access cocaine self-administration has been previ-

ously demonstrated as a critical mechanism of incubation of

cocaine craving (Conrad et al., 2008; Loweth et al., 2014). On

the other hand, cocaine self-administration followed by extinc-

tion training is also associated with AMPAR upregulation (Sutton

et al., 2003), and overexpression of GluA1 in the NAc attenuates

cocaine-induced (but not cue-induced) reinstatement of cocaine

seeking after extinction (Bachtell et al., 2008).

Our results showing that the nature and behavioral conse-

quences of cocaine-induced AMPAR upregulation are pathway

specific may help explain these seemingly contradictory find-

ings. Most strikingly, synaptic insertion of CP-AMPARs contrib-

utes to maturation of silent synapses in both BLA- (Lee et al.,

2013) and IL-to-NAcSh projections (Figure 2) after withdrawal

from cocaine, but CP-AMPAR accumulation within these two

NAcSh afferents has opposite effects on incubation of cocaine

craving. Furthermore, while the expression of incubation of

cocaine craving after prolonged withdrawal depends on CP-AM-

PAR accumulation (Conrad et al., 2008; Loweth et al., 2014),

recruitment of non-CP-AMPARs to PrL-to-NAcCo silent synap-
Neu
ses after prolonged withdrawal (Figure 5) also promotes this in-

cubation. Thus, multiple parallel mechanisms are likely induced

simultaneously after cocaine self-administration to regulate glu-

tamatergic transmission within the NAc, varying among different

projections, withdrawal times, and durations of cocaine expo-

sure. This raises questions for future studies, including whether

other projections to NAc (e.g., ventral subiculum) also undergo

silent synapse/CP-AMPAR-based remodeling and contribute

to incubation of cocaine craving.

Concluding Remarks
Biology always goes with yin and yang, and our present results

suggest that relapse—a key feature of addiction—is no excep-

tion. We showed that the two mPFC projections to the NAc

both undergo silent synapse-based remodeling after cocaine

self-administration but produce opposite effects on incubation

of cocaine craving. Unveiling the endogenously triggered pro-

and antirelapse circuitry remodeling may provide insight into

ways to manipulate this yin-yang balance and hopefully to pro-

vide new neurobiological targets for interventions designed to

decrease relapse to cocaine.

EXPERIMENTAL PROCEDURES

Detailed procedures are provided in the Supplemental Information.

Subjects

Male Sprague-Dawley rats (Charles River), postnatal day 28–30 at the begin-

ning of the experiments were used. The rats were used in accordance with pro-

tocols approved by the Institutional Animal Care and Use Committees at the

University of Pittsburgh and the European Neuroscience Institute.

Behavioral Studies

Drugs

Cocaine HCl was dissolved in 0.9% NaCl saline. Ketamine and xylazine were

mixed for anesthesia. Pentobarbital sodium was purchased from DEA-desig-

nated vendor at the University of Pittsburgh.

Viral Delivery

A 26-gauge injection needle was used to bilaterally inject 1 ml/site (0.2 ml/min) of

the AAV2 solution into the ventral (IL) (in mm, AP, +3.00; ML, ±0.70; DV,�4.75),

or dorsal regions of the mPFC (PrL) (in mm, AP, +3.00; ML, ±0.75; DV, �4.00).

Electrophysiological analyses were conducted �3 (1 day withdrawal) or

�8 weeks (45 days withdrawal) after viral injection.

Self-Administration Surgery, Apparatus, and Training

Procedures are described in the Supplemental Information. Notably, the cur-

rent cocaine self-administration procedure is slightly different from the one we

previously used (Lee et al., 2013): (1) rats used in previous studies were pur-

chased from Harlan, whereas rats used in the current studies were purchased

from Charles River; and (2) in previous studies, a fixed volume of cocaine so-

lution, and thus a fixed infusion duration, was used for each infusion. As such,

the concentrations were adjusted by body weight during each training ses-

sion. In the present study, the concentration of cocaine was fixed. As such,

the infusion volume, and thus the infusion duration, varied during training

sessions.

Optogenetic Procedures

For in vivo optical stimulation of mPFC projections, two 105 mm core optic fi-

bers were modified for attachment to an internal cannula creating the optical

neural interface (ONI) as described previously (Lee et al., 2013). Optic fiber light

intensity was adjusted to �10 mW of in vivo delivery of LTD protocols.

Electrophysiological Studies

Detailed procedures are provided in the Supplemental Information.
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Data Acquisition and Analysis

In all electrophysiology experiments, data were coded before analysis. Data

were then decoded for the final analysis. All results are shown as mean ±

SEM. Sample size in electrophysiology experiments was presented as n/m,

where ‘‘n’’ refers to the number of cells examined and ‘‘m’’ refers to the number

of rats. Statistical significance was assessed using t test or one-way/two-way

ANOVAs (with Bonferroni post tests). For all electrophysiology experiments

involving treated rats, both cell- and animal-based statistics were performed

and reported, with results of cell-based analysis provided in graphic presenta-

tions. In animal-based analyses, data of all recorded cells from a single rat

were averaged, and the mean was used to represent this rat.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article at http://dx.doi.org/10.

1016/j.neuron.2014.08.023.
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